IL M.C.D.

Che cos’è il Massimo Comune Divisore?
Il Massimo Comune Divisore fra due o più numeri è il maggiore tra i divisori comuni ai numeri dati. Il Massimo Comune Divisore si abbrevia con M.C.D.
Es: qual è il M.C.D.  tra 24 e 16?
Cerchiamo tutti i divisori di 24
D (24) = {1, 2, 3, 4, 6, 8, 12, 24}
Cerchiamo tutti i divisori di 16
D (16) = {1, 2, 4,  8, 16}
I due numeri 24 e 16 hanno dei divisori comuni: 1, 2, 4, 8. Il maggiore di questi divisori è 8, quindi il M.C.D. (24, 16) = 8
Esistono sistemi diversi per calcolare il M.C.D. fra due o più numeri. Noi qui ne presentiamo due.
·          Cominciamo ad esaminare il cosiddetto metodo insiemistico.
Vogliamo trovare il M.C.D. fra 65, 140 e 90.
Elenchiamo tutti i divisori di 65.
D (65) = {1, 5, 13, 65}
Elenchiamo tutti i divisori di 140.
D (140) = {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}
Elenchiamo tutti i divisori di 90.
D (90) = {1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90}
Calcoliamo l’insieme dei divisori comuni, cioè l’intersezione tra gli elementi dei tre insiemi precedenti.
D (65) ÇD (140) ÇD (90) = {1, 5,}
M.C.D. (65, 140, 90) = 5
Vediamo un altro esempio
Vogliamo trovare il M.C.D. fra 140, 105 e 35.
Elenchiamo tutti i divisori di 140.
D (140) = {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}
Elenchiamo tutti i divisori di 105.
D (105) = {1, 3, 5, 7, 15, 21, 35, 105}
Elenchiamo tutti i divisori di 35.
D (35) = {1, 5, 7, 35}
Calcoliamo l’insieme dei divisori comuni, cioè l’intersezione tra gli elementi dei tre insiemi precedenti.
D (140) ÇD (105) ÇD (35) = {1, 5, 7, 35}
M.C.D. (140, 105, 35) = 35
Possiamo quindi dire che con il metodo insiemistico, per calcolare il M.C.D. tra due o più numeri, si elencano gli insiemi dei divisori dei numeri dati, si calcola l’insieme intersezione e il M.C.D. sarà l’elemento maggiore dell’insieme intersezione.
·          Esaminiamo ora il cosiddetto metodo della scomposizione in fattori primi, raccomandabile soprattutto se i numeri sono grandi.
Vogliamo trovare il M.C.D. fra 288, 360 e 186.
Scomponiamo in fattori primi i tre numeri
288
2
144
2
72
2
36
2
18
2
9
3
3
3
1

 

288 = 25 x 32
360
2
180
2
90
2
45
3
15
3
5
5

 

360 = 23 x 32 x 5
186
2
93
3
31
31
1

 

186 = 2 x 3 x 31
Vediamo ora se ci sono fattori primi comuni ai tre numeri e consideriamoli col minore esponente.
288 = 25 x 32
360 = 23 x 32 x 5
186 = 2 x 3 x 31
I fattori comuni, presi con il minore esponente, sono 2 e 3, quindi
M.C.D. (288, 360, 186) = 2 x 3 = 6
Vediamo un altro esempio
Vogliamo trovare il M.C.D. fra 528, 624, 768.
Scomponiamo in fattori primi i tre numeri
528
2
264
2
132
2
66
2
33
3
11
11
1

 

528 = 24 x 3 x 11
624
2
312
2
156
2
78
2
39
3
13
13
1

 

624 = 24 x 3 x 13
768
2
384
2
192
2
96
2
48
2
24
2
12
2
6
2
3
3
1

 

768 = 28 x 3
Vediamo ora se ci sono fattori primi comuni ai tre numeri e consideriamoli col minore esponente.
528 = 24 x 3 x 11
624 = 24 x 3 x 13
768 = 28 x 3
I fattori comuni, presi con il minore esponente, sono 24 e 3, quindi
M.C.D. (288, 360, 186) = 24 x 3 = 16 x 3 = 48
Possiamo quindi dire che con il metodo della scomposizione in fattori primi, per calcolare il M.C.D. tra due o più numeri,  si scompongono i numeri dati in fattori primi  e il M.C.D. sarà il prodotto dei fattori comuni considerati con il minore esponente.
Vediamo un altro esempio
Vogliamo trovare il M.C.D. fra 9, 12, 14.
Scomponiamo in fattori primi i tre numeri
9
3
3
3
1

 

9 = 32
12
2
6
2
3
3
1

 

12 = 22 x 3
14
2
7
7
1

 

14 = 2 x 7
Vediamo ora se ci sono fattori primi comuni ai tre numeri e consideriamoli col minore esponente.
9 = 32
12 = 22 x 3
14 = 2 x 7
I tre numeri non hanno altri divisori comuni, oltre ad 1, quindi il M.C.D. è 1 e questi numeri si dicono primi tra loro.
ESERCIZI
·     Che cos’è il M.C.D. fra due o più numeri?
·     Quando due o più numeri si dicono primi tra loro?
·     Calcola il M.C.D. dei seguenti gruppi di numeri, usando il metodo insiemistico:
a) 70, 42, 98;                                     b) 56, 42, 24;
c) 32, 30;                                             d) 18, 20, 30
                        
                                    
·     Calcola il M.C.D. dei seguenti gruppi di numeri usando il metodo della scomposizione in fattori primi:
a) 60, 75;                                b) 252, 270;
c) 3 150, 3 675;                      d) 72, 128, 216;
e) 324, 729, 486;                    f) 190, 380, 684;
g) 180, 300, 528, 672;            h) 128, 220, 286, 308;